|
|
|
MIE508 20189 631575505914MIE508F 2018 FLUIDSOFBIOLOGICALSYST...
MIE508_20189_631575505914MIE508F_2018_FLUIDSOFBIOLOGICALSYSTEMS_E.pdf
Showing 8-10 out of 10
MIE508 20189 631575505914MIE508F 2018 FLUIDSOFBIOL...
MIE508_20189_631575505914MIE508F_2018_FLUIDSOFBIOLOGICALSYSTEMS_E.pdf-M1E508 - Fluids of Biological Systems
MIE508 20189 631575505914MIE508F 20...
MIE508_20189_631575505914MIE508F_2018_FLUIDSOFBIOLOGICALSYSTEMS_E.pdf-M1E508 - Fluids of Biological Systems
Page 8
For
V,,
=
0, what type of flow does this problem become? Derive the velocity
profile u
=
u(y)
for
V
=
0.
(8 marks)
For
V
> 0, use the Navier-Stokes equations to
derive the appropriate ordinary
differential equation (ODE), and write the boundary conditions (BCs) needed
to solve u
=
u(y). (8 marks)
(Don't try to solve the ODE! Just show how you arrive at the ODE and the boundary
conditions.)
Note: For your interest, the solution to the ODE is:
u(y)
-
2
I
y
-
1
e
-
em1
Umax
-
Re
h
+
sinh Re
]
(ö]
Page 9
AID SHEET
Governing Equations
Navier-Stokes Equations, Cartesian coordinates:
Coordinates
F =
(x,y,z)
Velocity
=
(u,v,w)
(Note: for constant density and constant viscosity fluids)
Du Dv 3w
—+—+—
ax
ay
Dz
Iwo
Du
Du
DuI
p
[Du
at
x
ay
Dzj
Dv
Dv
Dy
1
p
[Dv
at
x
ay
Dzj
Dw
3w
3w1
p
[aw
x
Dy
Dzj
Dp
D
2
u
D
2
u
D
2
u
=
--+
ax
Dx
+—+--
+f
Dy
Dz
Dp
32v
(92V
D2v
=
—--
+i
+f
Dp
D
2
w
9
2
w
D
2
w
=
--
+i
Dz
Dx
—+----+--
+f
Dy
Dz
Navier-Stokes Equations, cylindrical coordinates:
Coordinates
i?
=
(r, 0, z)
Velocity
'7
=
(U
r
, u
9
, u)
(Note: for constant density and constant viscosity fluids)
1
D
1Du
0
Du
--(ru
r
)+—+
=
rDr
r 9 Dz
au,
au, u
9
Du
r
u
Du
r
=
at
Dr
r DO
r
Dz
Du
9
Du
9
u
9
Du
9
u
r
ue
N
O
Dr rDO r Dz
Du
Du u
0
Du
Du
=
at Dr rDO Dz
1DP
1V
_u
r
2Du
0
'
---
+1-i•
Ur
j+fr
pDr
r
rpDO
llDP
_uo 2Du
r
-----
+1'
U8
r2
r2
ao
1Dp
2
+ vV
u
2
+ f
p Dz
where
V
2
1D(D\ 1D
2
32
Reynold's Transport Theorem:
Drn
JVW
ap
Dt
DtS
Page 10
Stress Tensor
The shear stress tensor for a Newtonian fluid of constant density is defined as follows:
i'a
ni
=
(
+
\0Xi
3x
Trigonometric ]Identities
sin(A +
B)
=
sin
A
cos
B
+
cos
A
sin
B
cos (A +
B)
=
cos A cos B sin A sin B
sin
2
X + c0s
2
x
=
1
Calculus
Chain Rule:
f(g(x))
=
f(g(x))g'(x)
dx
Product Rule:
xx
=
f'xgx + f(xg'(x)
dx
Quotient Rule:
d (f(x))
f'(x)g(x)
-
f(x)g(x)
dx g(x)
-
(g(x))2
Porous Media Flows
Kozeny-Carman relationship for permeability:
E3
K
2n2S2
where e is the porosity, 'r is the tortuosity, and S is the surface area-to-volume ratio.
Flow rate through a single cylindrical straight pore:
-
Qpore
nr
4
/p
8p
L
Darcy's Law:
Q
KLp
AJ1L
10
Ace your assessments! Get Better Grades
Browse thousands of Study Materials & Solutions from your Favorite Schools
University of Toronto
University_of_Toronto
School:
Fluids_of_Biological_Systems
Course:
Introducing Study Plan
Using AI Tools to Help you understand and remember your course concepts better and faster than any other resource.
Find the best videos to learn every concept in that course from Youtube and Tiktok without searching.
Save All Relavent Videos & Materials and access anytime and anywhere
Prepare Smart and Guarantee better grades
Students also viewed documents
lab 18.docx
lab_18.docx
Course
Course
3
Module5QuizSTA2023.d...
Module5QuizSTA2023.docx.docx
Course
Course
10
Week 7 Test Math302....
Week_7_Test_Math302.docx.docx
Course
Course
30
Chapter 1 Assigment ...
Chapter_1_Assigment_Questions.docx.docx
Course
Course
5
Week 4 tests.docx.do...
Week_4_tests.docx.docx
Course
Course
23
Week 6 tests.docx.do...
Week_6_tests.docx.docx
Course
Course
106